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ABSTRACT 

The proliferation of Fake-News is a significant problem at 

the intersection of politics and technology, due to the 

potential for malicious agents to drive socio-political 

agendas. Current approaches to detect fake-news involve 

manual fact-checking, and crowd-sourcing which are both 

tedious and error-prone. The complexity of the task means 

text mining and machine learning models can make 

significant contributions to fake-news detection. While the 

problem-statement of fake-news is simple, the number of 

variables describing fake-news are both numerous and 

complex. Corresponding approaches can range from natural-

language models to social-network propagation analysis. To 

this end, we surveyed existing literature and explored the 

following three approaches: language analysis, stance 

analysis and website domain/social media account 

trustworthiness. Consequently, we developed a system that 

leverages on text mining and machine learning models to 

detect fake articles. The system currently constitutes an 

ensemble of three models that use text features, stance scores 

and domain trustworthiness for prediction. Additional 

models can be added to the system to incorporate more 

variables of fake news. The methodology of the current 

system as well as the performance of its constituent models 

are presented in this report. 
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1 INTRODUCTION 

Social media and online publications have become the key 

medium of information distribution, due to its ease of both 

creation and consumption. This mechanism has however 

been exploited by malicious agents who seek to drive their 

social or political agendas through Information Operations. 

The term Information Operations is defined by Facebook in 

its whitepaper [1] as:  

 

“…Actions taken by organized actors (governments or non-

state actors) to distort domestic or foreign political 

sentiment, most frequently to achieve a strategic and/or 

geopolitical outcome. These operations can use a 

combination of methods, such as false news, disinformation, 

or networks of fake accounts aimed at manipulating public 

opinion...”  

 

The need for automation, and the lack of a clear-cut 

algorithmic process to verify an article makes this problem 

an interesting target for data mining, natural language 

processing and machine learning based solutions.  

1.1 Case Study – Russian Involvement in US Elections 

In 2017, in the aftermath of the US Elections of 2016, it came 

to light in several investigations that Russian political actors 

had extensively used social media to subvert elections in 

many countries[1]. Paid Russian trolls as well as automatic 

bots created several pages and distributed messages via 

social media favouring candidates as well as spread fake 

news and propagandist articles to sow discontent between 
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different groups to socially engineer a favourable election 

result. Representatives from Facebook and Google were 

strongly rebuked in a Congressional hearing for their failure 

to identify and curb these activities. 

‘Fake news’ played a prominent role in these activities.  

2 PROBLEM DESCRIPTION 

Text-Mining is an approach that uses Language-Analysis 

tools such as TFIDF to represent the local-information of an 

article. Given a corpus of articles, as seen in the Kaggle 

Getting Real about Fake News challenge, a TFIDF vector for 

the corpus is generated, and then Logistic Regression, 

Random Forest, and XGBoost models are trained to classify 

the articles. 

 

Problem Statement: Given an Article x, comprising of a 

Body, Headline, and Website Domain, learn F(x), where F(x) 

maps x to the class set C = {1: Fake, 0:  Verified} 

 

Information about an Article x can be divided into two 

primary components, namely meta-information and local-

information. Meta-information pertains to external 

information about the article, such as publisher reputation, 

publication date-time, and article tags issued by the 

publisher. In contrast, Local-information is extracted solely 

from the Headline and Body text strings of the Article. The 

breadth of potential features that can be extracted from both 

an Article’s meta-information and local-information allow 

for multiple approaches to build the required classifier. 

 

Subproblem 1: Given an Article x, from an Article corpus X, 

develop a classification model that extracts textual-features, 

learns the corresponding parameters, and generates ∃ F(x), 

where Fmodel1(x) maps x to the set C = {1: Fake, 

0:  Verified} 

 

Another method to using Local-information is extracting the 

topic of an article, identifying its stance on the topic, and 

comparing this stance to the stance of other articles with the 

same topic. This is akin to human process of examining 

different articles to fact-check the claims of the article in 

question. This leads to: 

 

Subproblem 2: Given an Article a, and another Article b, 

develop a stance prediction model that extracts textual-

features, and learns F(a, b), where F(a, b) maps the tuple (a, 

b) to the set S= {Discusses, Agree, Disagree, Unrelated, } 

 

Stance Definition: A Stance is a discrete representation of 

the mapping between a headline and an article, i.e. for ∃ 

(a,b), a,b 𝝐 ArticleSet, f(a,b) 𝝐 {Agree, Disagree, Unrelated}. 

If the claim made by Article A, matches the claim made by 

Article B, then f(a,b) = Agree. If the claim made by Article 

A, is the opposite of the claim made by Article B, then f(a,b) 

= Disagree. Otherwise, f(a,b) = Unrelated 

 

Meta-information of an article is actively used by humans in 

discerning its trustworthiness. The reputation of the 

journalist or the publisher is an important consideration 

when verifying an article. The trustworthiness (Tw) of an 

article is evaluated as follows: 

 

𝑇𝑤(𝑑𝑜𝑚𝑎𝑖𝑛) = 𝑃(𝑟𝑒𝑎𝑙|𝑑𝑜𝑚𝑎𝑖𝑛) − 𝑃(𝑑𝑜𝑚𝑎𝑖𝑛|𝑓𝑎𝑘𝑒) 

 

  =
𝐶𝑜𝑢𝑛𝑡(𝑑𝑜𝑚𝑎𝑖𝑛,𝑟𝑒𝑎𝑙)

𝐶𝑜𝑢𝑛𝑡(𝑑𝑜𝑚𝑎𝑖𝑛)
−

𝐶𝑜𝑢𝑛𝑡(𝑑𝑜𝑚𝑎𝑖𝑛,𝑓𝑎𝑘𝑒)

𝐶𝑜𝑢𝑛𝑡(𝑓𝑎𝑘𝑒)
 

 

At the same time, two articles on the same topic, but from 

different domains, could have similar textual-features but 

differing truth-values. An ensemble model is required to 

firstly weight the stances of an article by its domain 

trustworthiness, and secondly combine the approaches in 

Subproblem 1 and Subproblem 2 to classify an article. 

 

Subproblem 3: Given an Article a: 

 compute Tw(a) for domain trustworthiness 

 Compute Fmodel-1(a) for dataset specific score 

 use Subproblem 2 to compute P (a == True) 

 generates F(Tw(a)*P(a==True), Fmodel-1(a)), where 

F (a, b) maps the tuple (a, b) to class set C = {1: 

Fake, 0:  Verified} 

3 LITERATURE REVIEW 

While fake-news detection might be a relatively nascent 

field, text-mining of news articles is an established body of 

research, and several techniques from these fields are 

borrowed to build our classifiers.  

3.1 Feature Extraction Review 

Feature extraction for Fake News Detection is split into the 

two general fields of News Content Features and Social 

Context Features.  

 

News Content Features: News Content Features are 

extracted from attributes such as Article Source, Headlines, 

Body Text, and Images/Videos.  These features can be 

language-based such as presence of clickbait titles, hate-

speech, and long-winded rant-like sentence structures, 

among others. Text-mining techniques such as n-grams, 

bag-of-words, and Parts-of-Speech (POS) tagging can help 

identify such syntactical features [6]. Domain-specific 

language structures, i.e. features that are specific to News 
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Articles, such as quotations, number of citations, quality of   

external links can also be used to capture hints of deception 

or at least poor-quality journalism, giving us, an idea of 

which articles are well-researched and substantiated, and 

which articles are fake-news simply masquerading to be 

professional journalism [2]. 

 

Social Context Features: Such features depict how the 

article has propagated across the media, from publication to 

social-engagements such as sharing, liking, and re-tweeting. 

User-related Social Context Features include frequency of 

posting, posting time-of-day, and sentence templating to 

check whether the original publisher is a bot, or an actual 

human [2]. Group-related Social Context Features create 

Sharing-Graphs to verify whether a group of members 

constantly share or re-tweet between themselves to make the 

article more popular, or whether the article’s dissemination 

is more organic. 

3.2 Machine Learning Model Review 

There is no specific Machine Learning model that 

consistently outperforms other models, or is inherently 

better suited to Fake News detection. Support Vector 

Machines are conventionally used as the baseline model, and 

its performance (not tuned) ranges from 50% to 70% across 

different fake-news datasets [4]. 

 

A key concern in Fake News detection is that models are 

overfitting on certain textual parameters such as some 

specific n-gram or TFIDF vector column. Ensemble models 

such as XGBoost and Random Forests are shown to learn 

more nuanced rules about the parameters, and thus reduce 

overfitting [5].  

 

Lastly, Deep Learning has been used extensively, especially 

Recurrent Neural Networks, in hopes that the model is able 

to extract more information from temporal sequences of 

textual features than static models. While RNNs, especially 

LSTMs are shown to outperform Ensemble Decision-Tree 

based models, the performance increase is reported to not be 

significant [4].  

 

Lastly, it is shown that models trained on one fake-news 

corpus are not generalizable to articles from a topically 

distinct corpus. This is especially true for textual-features 

based machine-learning models, which rely on the presence 

of corpus-specific n-grams and sentence structures to 

classify an article [5]. 

4 EVALUATION METRICS 

To evaluate our model that we developed for the discussed 

problem, various evaluation metrics have been used. In this 

subsection, we define the following terms: 

 True Positive (TP): when predicted fake news is 

fake news 

 True Negative (TN): when predicted true news is 

true news 

 False Negative (FN): when predicted true news is 

fake news 

 False Positive (FP): when predicted fake news is 

true news 

 

Using these definitions, we compute the following metrics: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
|𝑇𝑃|

|𝑇𝑃| + |𝐹𝑃|
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
|𝑇𝑃|

|𝑇𝑃| + |𝐹𝑁|
 

 

𝐹1 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
|𝑇𝑃| + |𝑇𝑁|

|𝑇𝑃| + |𝑇𝑁| + |𝐹𝑃| + |𝐹𝑁|
 

 

These metrics are frequently used in machine learning for 

showing the performance of classifiers. In our specific 

context, accuracy depicts the similarity between the 

predicted and real fake news. Precision measure the subset 

of all detected fake news that were classified as fake news. 

But it is relatively easy to get a high precision, which is 

possible by making very few positive predictions. This is 

where recall comes in. Recall is used to measure the 

sensitivity, or the true positive rate which is the fraction of 

annotated fake news articles that are predicted to be fake 

news. F1 is used to combine precision and recall, which can 

provide an overall prediction performance for each our 

models. 

5 DATASET SPECIFIC FEATURE MINING 

(Subproblem 1)  

5.1 Introduction  

The prominence of hate-speech, and extreme-bias in Fake-

News articles makes language-analysis based methods a 

promising approach. This is because of the relatively higher 

frequency of derogatory phrases such as ‘Muslim-Invasion’ 

and ‘Crooked-Hillary’, which can be captured by n-grams. 

TFIDF vectors extract such prominent n-grams by 

calculating their frequency relative to the corpus, and can be 
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passed as input vectors to machine-learning models to build 

a classifier [8]. Given a dataset consisting of news articles 

(A), let Atext represent the textual content of the article. Atext is 

a tuple of Aheadline and Abody, each of which contain a String 

object storing the text data of the respective article section. 

Aheadline and Abody can be represented as a TFIDF vector 

[4,12].  

5.2 Dataset Description 

The data-set is unique, and has been constructed from 

existing fake-news data-sets from the Fake News Challenge, 

and Kaggle's Getting Real about Fake News Challenge. It 

has then been enhanced by web-scraping news articles from 

verified sources such as The Guardian, New York Times, 

and Bloomberg, using a custom-built web-scraper through 

the libraries Scrapy and BeautifulSoup. 

 

Table 1: Dataset Statistics 
 

 Count Fake article 

Count 

Verified 

article Count 

Overall 27473 18409 9064 

Train 18406 12299 6107 

Test 8160 5514 2646 

Validate 907 596 311 

 

 

5.3 Data Exploration 

We observed from the visualizations that the words that were 

commonly occurring in fake news articles fall into three 

main categories:  

 

Strong Adjectives: Words like ‘brutal’ and ‘massive’ are the 

most frequently used in fake news articles as clickbait 

material for attracting the attention of internet surfers.  

 

Politically and Religiously Charged: Common words that 

came up during the mining showed that words instigating 

political and religious bias were popularly read by the 

respective sectors. 

 

Name-Calling: These appeared in fewer articles and tries to 

instigate hate and violence against sectors of the society. 

 

Table 2: Commonly Occurring Word Groups 

 

Adjectives Political 

Religious 

Name-Calling 

Brutal Brexit Crooked-Hillary 

Aggressive Mosul Islamic Pests 

Massive Obama  

Destructive Trump  

 

The prominence of hate-speech, and extreme-bias in Fake-

News articles makes language-analysis a promising 

approach.  

5.4 Feature Extraction 

One interesting point which emerges from our preliminary 

observations is that the text provides a valuable insight into 

determining the fakeness of the given article. Hence, we 

decided to extract an array of well-known text features, few 

of which we have described below. 

 

TF-IDF: Term Frequency / Inverse Document Frequency is 

a statistical measure that reflects how important a term is in 

a document or a collection of documents. It is used as a 

weighting factor in information retrieval, data mining, etc. 

i.e. it is used to reflect the relative contribution of different 

words to a document. Term Frequency is simply a measure 

of a term in the document, which approximates the 

importance of the term. However, it does not consider the 

fact that certain words just appear more frequently in the 

language or that particular corpus. Therefore, Inverse 

Document Frequency, a measure of how frequently a word 

appears in the corpus is used to offset Term Frequency to 

provide a more accurate approximation of the term’s 

importance.  

 

 
 

 
 

 
 

For example, if we wished to rank a set of documents based 

on which is most relevant to the query ‘the nuclear war’, we 

should prioritize occurrence of the term ‘nuclear’ more than 



 

5 

 

the term ‘the’ ‘the’ occurs way too frequently and does not 

necessarily indicate that the given document is very relevant 

to the query. That is the information TF-IDF provides us. 

 

 

N-Grams: An n-gram is a contiguous sequence of n items 

that forms a given sequence of text or speech. These items 

could be syllables, words, letters or anything else based on 

the application it is being used for. An n-gram of size 1 is 

called ‘unigram’, of size 2 is called ‘bigram’, of size 3 is 

called ‘trigram’ and so on [13].  

From the sentence ‘The US President Donald Trump 

tweeted …’, unigrams will be ‘The’, ‘US’, ‘President’, 

‘Donald’, … and the bigrams will be ‘The US’, ‘US 

President’, ‘President Donald’, ‘Donald Trump’, and so on. 

We can use n-gram frequency to match similar articles. For 

example, matching frequency of the n-gram ‘Trump 

tweeted’ in different articles is a much stronger indicator that 

they are similar compared to just matching frequency of the 

words ‘Trump’ and ‘tweeted’[10]. 

 

Bag of Words: Bag of words is a simplifying representation 

of a text or document solely as a multiset of its words, 

disregarding their relative order or grammar, but preserving 

their frequency. Bag of word representation is a prerequisite 

for extracting useful features from the document for its 

classification, for instance, term frequency. This model is 

commonly used in natural language processing and 

computer vision[10]. 

 

 

 

5.5 Models Experimented 

On extracting a preliminary set of features, we fed them into 

three different models to train the prediction of the news 

articles. 

 

XGBoost: XGBoost stands for extreme Gradient Boosting. It 

is an open source software library which provides a gradient  

 

boosting framework for C++, Java, Python and many other 

languages. It is used for supervised learning problems, where 

we use the training data (with multiple features) Xi to predict 

a target variable Yi. It is developed with both deep 

considerations in terms of systems optimization and 

principles in machine learning. Over the years it has gained 

a lot of popularity in Data Science circles and it is the 

algorithm of choice in Kaggle competitions. 

 

Linear Regression: Linear regression was developed in the 

field of statistics and is studied as a model for understanding 

the relationship between input and output numerical 

variables. It is now increasingly used as an algorithm in 

machine learning applications. Linear regression assumes a 

linear relationship between the input variable and a simple 

output variable. Based on the training data, it allows us to 

form a model which allows future predictions. Linear 

regression model’s simplicity makes it a very attractive 

model. 

 

Random Forest: Random Forest is one of the most popular 

and most powerful machine learning algorithms. It is a type 

of ensemble machine learning algorithm called Bootstrap 

Aggregation or bagging. Random Forests are an 

improvement over bagged decision trees. A problem with 

Figure 1: Data Pipeline Schema for Text-Mining 
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decision trees like CART is that they are greedy. They 

choose which variable to split on using a greedy algorithm 

that minimizes error. As such, even with Bagging, the 

decision trees can have a lot of structural similarities and in 

turn have high correlation in their predictions[10]. Random 

forest limits the learning algorithm to a random subset of 

features to search and therefore avoids this problem. 

 

5.6 Result Summary 

Below are a summary of the results we have obtained from 

the different models that we tested: 

Table 3: Model Performance Statistics 

Models F1 Score Accuracy 

Logistic Regression – Headlines 69.58 75.83 

Logistic Regression – Body 74.87 75.49 

Random Forest  

– Headline 

70.54 76.74 

Random Forest  

– Body  

89.07 88.71 

XGBoost – Headline 95.33 91.28 

XGBoost – Body 92.49 93.75 

 

Both Random Forests, and XGBoost offer a marked 

improvement in accuracy and F1-Scores over the baseline 

model of Logistic Regression. The key take-away is the 

success of ensemble models. We suspect there are three 

reasons for this is: 

 

1. Decision-Tree based models are able to unearth more 

complex rules than Regression models, and are able to 

identify singular features or feature-combinations that 

are dominant. 

2. Ensemble Decision-Trees in general reduce variance 

because the average opinion of many models would be 

less noisy than that of one model [9]. 

3. Ensemble Decision-Trees are less likely to over-fit than 

regression models. This can be clearly seen in the case 

of F1-Score, and Accuracy charts against number of 

samples during cross-validation. While the F1 and 

Accuracy Scores suddenly rise for Linear Regression 

after a critical mass of samples during training, this 

trend is not supported during testing. 

 

 
Fig 2: F1 Score of Logistic Regression - Headline TFIDF 

 

 

 
Fig 3: F1 Score of XGBoost using Body TFIDF 

 

As can be seen, XGBoost seems to be actually learning 

complex decision rules, since both testing and training 

scores are steadily increasing with the number of samples. 

Whereas, for Logistic Regression, the testing scores are 

decreasing even though the training scores are increasing. 

 

Ultimately, the XGBoost algorithm was finalized, because it 

best incorporated the advantages of Ensemble Models over 

Logistic Regression, had the highest accuracy, and overfit 

the least. 
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6 STANCE DETECTION MODEL (Subproblem 2) 

6.1 Motivation 

In the previous section we described the functioning of our 

model which uses text features from an existing dataset to 

predict classify articles as fake or real. While the model 

achieves a decent accuracy on the testing set, it only uses 

mined text occurrences in the form of TFIDF to classify fake 

news. However, articles with similarity in TFIDF vectors 

can have opposite veracity. As a result, a Stance-Detection 

model is developed, such that if some Article T, has an 

opposing stance to a verified Article V, then it is likely to be 

Fake. Consider the following two headlines: 

 

H1: “Kremlin Denies Meddling in US Elections” - Fake 

H2: “Kremlin Officials Confess US Manipulation” - Fake 

 

As shown above, H1 and H2 are contradictory statements yet 

both are classified as being fake. This is due to the heavy 

reliance on dataset specific text features. The previous model 

may have learned to associate the term “Kremlin” with fake 

articles based on the training dataset. Thus, any new article 

with the term “Kremlin” and other less relevant terms may 

be classified as fake.  

We aim to make our model more ‘symmetric’ and ‘global’ 

by incorporating a domain weighted stance computation 

model. We define the above two terms as follows: 

 

Symmetric: A model is symmetric if for two contradictory 

articles A1and A2,  

fake_score (A1) = 1 - similarity (A1, A2) * fake_score (A2) 

 

Global: A model is global if while computing fakeness of an 

article A1, it uses information from all articles related to A1.  

6.2 Stance Computation Model 

In this section, we describe the methodology of developing 

the stance detection model. The stance model computes for 

any given pair of headline and body, the following:  

 

 
As shown above, the model outputs stance by learning a set 

of parameters θ on the training data to identify the highest 

probability stance class.  

6.3 Dataset 

To develop the stance detector model, we obtained data from 

the http://www.fakenewschallenge.org/ . Each row in the 

training and validation data consists of three columns: 

headline, body and stance. The testing data consists of just 

rows of headline and body. The dataset statistics are 

summarized as below:  

 

   Table 4: Stance Dataset Statistics 

As can be seen from the bar plot in Figure 2, majority of 

instances are unrelated. This is to ensure that the classifier 

model is robust to only extract key features that signify 

whether an article body discusses a given headline. 

 

6.4 Feature Extraction 

Given the dataset for stance only comprises of text headline 

and articles, we derive more text features.  

1) TFIDF for headline and body: We again made use of 

TFIDF as described in section _. The TFIDF is obtained 

jointly for headlines and bodies. Thus, given related 

headlines and bodies, the TFIDF representation should 

be similar.   

 

2) Cosine similarity of TFIDF representations: The cosine 

similarity is a popular similarity measure between two 

vectors by using the angle between them. It is computed 

as follows: 

http://www.fakenewschallenge.org/
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cosine similarity(a, b)= 
𝐴.𝐵

|𝐴|.|𝐵|
 

We use the cosine similarity between the TFIDF 

representation of headline, and TFIDF representation of 

body as a feature in our model. 

3) Word Embeddings (Word2vec vector representations): 

Word2vec is a neural network based language 

modelling technique which maps words to vectors of a 

fixed dimension length. The vectors capture context 

dependent usage and co-occurrence of words. Using 

word vectors as features is extremely useful in our task 

since it encompasses natural language processing 

features such as synonyms, plurals, verb tenses and 

related corpus words. For example, since ‘UFO’ and 

‘aliens’ are likely to occur in the same context 

frequently in a corpus, they will be situated close to each 

other in the vector space. This property is shown in the 

image below [13]: 

 

Figure 5: Word2Vec Representations 

 We obtained pre-trained word vectors from 

https://github.com/mmihaltz/word2vec-GoogleNews-

vectors . It consists of 300 dimensional representations 

of 3 billion English running word tokens.  

 

4) Singular Value Decomposition: Singular value 

decomposition is a matrix factorization approach which 

decomposes a given matrix A into the three matrices U 

V D given by the following:  

𝐴 = 𝑈. 𝐷. 𝑉𝑇  

The obtained values in D are positive entries known as 

singular values. Thus, SVD can be used as a 

dimensionality reduction technique. We make use of it 

as a feature by using the singular values obtained from 

performing SVD on the concatenated TFIDF 

representation of headlines and articles.  

6.5 Experimented Models  

The table below lists the performance of the models we 

trained for stance detection on the previously mentioned 

dataset.  

Table 5: Model Performance Statistics 

Models Competition 

Scores 

Validation 

Scores 

Baseline 75.20 79.53 

SVM    - 65.94 

BiLSTM 75.80 80.25 

BiLSTM+ 

Concat 

TFIDF 

80.80 85.52 

Note: Since the competition ended on Jun 2nd 2017, we only 

obtain scores by running the competition_scorer.py 

provided by the organizers.  

6.5.1: Baseline Model: The baseline model used by the Fake 

News Challenge makes use of Gradient Boosting Classifier. 

The features used are: normalized word tokens, overlap of 

tokens in headline and body, specific refuting words and 

counts of n-grams and char-grams. 

6.5.2: SVM Model with TFIDF representation: Our first 

model consisted of computing the TFIDF representation of 

headline and body and feeding the concatenated 

representation it into a Linear Support Vector Machine.  

 

Support Vector Machines 

Support vector machines are supervised learning models 

with associated learning algorithms that try to determine an 

optimal hyperplane to maximize the distance of hyperplanes 

between given classes.  We make use of the LinearSVC 

package [8]. 

https://github.com/mmihaltz/word2vec-GoogleNews-vectors
https://github.com/mmihaltz/word2vec-GoogleNews-vectors
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Model Architecture 

The model is represented in the figure below: 

 

            Figure 6: SVM based stance model  

 

Model Performance 

It achieves a poor validation score of 65.94% which is much 

lesser than the competition baseline, hence we do not score 

this model from the competition testing set. This may be 

because the data is not linearly separable and hence the SVM 

is not able to find a suitable decision boundary.  

6.5.3: Bidirectional LSTM with word2vec embeddings:  

Our second model consisted of using a deep learning based 

bi-directional LSTM model initialized with word2vec 

embedding representations. We first display the model 

architecture and then elaborate on the deep learning methods 

that we used for our experiment. 

Model Architecture 

In our experiments we make use of the Keras package with 

Tensorflow backend to perform experiments. Additionally, 

the following models are run on a GPU processor given the 

high dimensionality of input data.  

 

     Figure 7: Bidirectional LSTM based stance model 

Fully Connected Artificial Neural Network  

A fully-connected Neural Network uses a non-linear 

activation function to learn complex non-linear decision 

rules. For example, using the standard sigmoid activation 

function the output h1 is: 

ℎ1 = sigmoid(𝐰. 𝒙) 

Where the sigmoid function is defined as: 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1/(1 + 𝑒−𝑥) 

Other non-linear activation functions include Tanh, Rectified 

Linear Unit, and Softmax.  

Long Short-Term Memory Network (LSTM) 

Recurrent Neural networks (RNNs) is specific type of 

artificial neural network where connections between hidden 

units form a directed cycle. Hence, it can capture sequential 

dependencies for input data. This is extremely useful in 

natural language processing tasks, since written text often 

follows a sequential relation.  

However, traditional   RNNs suffer from vanishing 

gradients, due to which they lose information over long 

sequences. This severely inhibits their performance in 
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capturing long sequences. Hence, LSTMs are introduced, 

which contain of memory cells, and more parameters to 

capture long term dependencies.  

A Unidirectional LSTM only preserves information of the 

past because the only inputs it has seen are from the past. In 

Bidirectional LSTMs, inputs are run once from past to future 

and then from future to past, and in this way it is able to 

preserve both those sets of information in its hidden states. 

Softmax Output 

The Softmax function is used to represent a categorical 

distribution, i.e. the probability distribution function of K 

different events. Softmax is designed to assigns the largest 

probability to the most frequently appearing category, and 

suppress the values that are significantly out of line with the 

average. Given an input vector x, the probability that the 

output y = j given by: 

𝑃(𝑦 = 𝑗|𝑥) =  
𝑒𝒙𝑇𝒘𝑗

∑ 𝑒𝒙𝑇𝒘𝑘𝐾
𝑘=1

 

Mean Cross-Entropy Cost Function 

The cross-entropy measure has been used as an alternative 

to squared error. Cross-entropy can be used as an error 

measure when a network's outputs can be thought of as 

representing independent hypotheses (e.g. each node stands 

for a different concept), and the node activations can be 

understood as representing the probability (or confidence) 

that each hypothesis might be true. In that case, the output 

vector represents a probability distribution, and our error 

measure - cross-entropy - indicates the distance the 

network’s output distribution for stance labels against actual 

one hot encoded labels. The cross-entropy between a “true” 

distribution p and an estimated distribution q is defined as: 

𝐻(𝑝, 𝑞) =  − ∑ 𝑥 𝑃(𝑥) log (𝑞(𝑥)) 

RMSProp Function 

RMSProp is an improvement of Stochastic Gradient Descent 

(SGD). It keeps running average of its recent gradient 

magnitudes and divides the next gradient by this average so 

that loosely gradient values are normalized. 

 

 

Dropout Regularization 

Dropout is a regularization technique for reducing 

overfitting in neural networks by preventing complex co-

adaptations on training data. It is a very efficient way of 

performing model averaging with neural networks. 

Model Performance 

As shown in Table 5, our bidirectional LSTM performs 

much better than the previous SVM based model and also 

beats the baseline during validation as well as competition 

testing set. However, we realized by adding more features to 

the deep learning model we could improve its performance.  

6.5.4: Bidirectional LSTM with word2vec embeddings:  

Our final model consisted of using a deep learning based bi-

directional LSTM model initialized with word2vec 

embedding representations. In addition, we concatenated 

TFIDF representations of headline and body. Finally, we 

also use the cosine similarity between both the LSTM 

representations as well as the TFIDF representations. 

   

 

Figure 8: Deep Learning Model Pipeline 

As shown above, our model now incorporates TFIDF 

features as well as cosine similarities between 

representations. The final layer input is a concatenated 

representation of [Headline and Body LSTM, Headline and 

Body TFIDF, Cosine similarity between Headline and Body 

LSTM, Cosine similarity between Headline and Body 

TFIDF]. This is fed into a fully connected neural network 
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layer of 64 units. The hyper-parameters for our final model 

are given below: 

Table 6: Deep Learning Model Hyper-Parameters 

 

Model Performance: 

As shown in Table 5, the model achieves a validation 

accuracy of 85.52% but a competition testing score of 

80.8%. This is shown in the plot below:  

 

Figure 9: Stance Model Accuracy over Epochs 

 

As can be seen from the plots, our model overfit on the 

training data after epoch 8. To counter this more number of 

epochs are run. Given GPU restrictions, we limited to GPU 

running time of 2 hours (40 epochs). Typically winning 

models are run over 100 epochs.  

Additionally, the model’s score on the competition testing 

set, when run using the competition scorer resulted in a 

competition score of 9148.500. This corresponds to a private 

rank of 13th out of 50 competitors in the competition 

leaderboard although the competition has now ended [11].   

The final testing confusion matrix is given below: 

 Agree Disagree Discuss Unrelated 

Agree 1046 36 256 565 

Disagree 17 339 185 156 

Discuss 401 209 1778 2076 

Unrelated 130 88 750 17381 

The model accuracy came to 80.8%. The maximum 

possible score in the fake-news challenge is 11651.25. The 

model scored 9147.0. This would rank at 13th 

corresponding to 50 historical participants. 

 

Figure 10: Stance Model Loss over Epochs 

 

 

HyperParameter Definition 

LSTM hidden units 64 

Headline LSTM length  30 

Body LSTM length 200 

Fully connected layer units 64 

Dropout 0.2 

Cost function Mean Cross Entropy 

Optimizer RMSProp 

Batch size 32 
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7 COMBINED MODEL 

7.1 Motivation 

From our observations in section 5 and 6, we see that both 

the Dataset-specific text Feature Mining and the Stance 

Detection Models provide us with valuable insights into 

determining the fakeness of a given news article. Our final 

model proposes a novel combination of the above two 

models to determine the fakeness of the article.  

 

Figure 11: Combined Model Architecture 

We combine the final predictions made by the model 

described in Section 5 and in Section 6 in our final model 

using a weighted average. The weights can be learned using 

different methods. The major limitation that we faced while 

was that the Text Based model was trained on a different 

dataset as compared to the Stance Based model. As a result, 

applying the combined model to either data-set would result 

in poor performance, since the features of both models are 

specific to the corpus they were trained on.  A solution to 

this problem would be to either label the news articles in the 

stance data-set as ‘fake’ or ‘verified’, or assign stance labels 

to tuples of news articles in the fake-news Data-set. 

  

8 FUTURE RESEARCH 

The project is still in its nascent stages, and future research 

and development will focus on the following three sections: 

8.1 Enhancement of Textual Features 

Apart from TFIDF vectors, sentiment-extraction from an 

article body is shown to be a promising feature in 

classification of news articles [4, 6]. This is because of the 

extreme and imbalanced sentiments expressed in some fake-

news articles, especially in hate-speech. 

 

Another relevant technique is known as Claim Extraction. 

This technique is a subset of the broader technique of text -

summarization [11]. Explicitly extracting and comparing the 

claims made by an article could yield better performance 

than implicitly extracting claims through vector 

representation of an article, and this could make Stance 

Recognition more effective. 

 

8.2 Optimization of LSTM Hyperparameters 

Due to limited access to a GPU workstation, it was difficult 

to fine-tune the hyperparameters of the LSTM such as the 

number of dropout, and pooling layers, the number of 

neurons in each layer, and other parameters. Stacking 

multiple layers of RNNs would bring temporal hierarchy to 

the model and allow it better to understand the changes in 

textual-features over time. 

8.3 Framework Packaging and API: 

Ultimately, the goal for FakeNet is to become a general 

library for fake-news detection, where end-users can plug in 

their corpus, train the models, and begin article 

classification. To this end, there is already a function that lets 

users input their article in a String format and returns a 

classification based on the existing corpus. However, 

providing an API to re-train on a supplied corpus is the next 

step. Speed enhancements to the training and testing process 

are critical as well. 

9 CONCLUSION 

This paper successfully demonstrates the validity of textual-

feature, article-stance, and domain-weighted ensemble 

approaches to fake news classification. In the traditional 

machine-learning category, XGBoost delivers the best 

performance due to the low variance, and reduce overfitting 

that is typical of ensemble models. The Stance Bi-directional 

LSTM is ranked 13th out of 50th using the Scorer Module of 

the Fake News Challenge.  The key innovation is combining 

a stance-based prediction model with tradition textual-

features based models, thereby leveraging on a separate area 

of research to enhance fake-news detection algorithms. The 

implementation details along with the source code can be 

found at:  https://github.com/shantanuj/Fake_Net 

 

Model performances however, were sensitive to the 

percentage distribution of fake-news to real-news in the 

corpus. Since the real-world distribution of fake to real-

news is unknown, it was difficult to design an ideal corpus. 

Additionally, the fake-news models presented here are 

https://github.com/FakeNewsChallenge/fnc-1
https://github.com/shantanuj/Fake_Net
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corpus-dependent and not generalizable. For example, the 

Bloomberg scraping focuses heavily on Trump articles, and 

thus it fails to recognize fake-news articles in domains 

outside of Politics. 
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