
FakeNet: A Scalable Framework to Detect and Analyze

Fake News

Shantanu Jaiswal

U1423003C
School of Computer Science and

Engineering, Nanyang Technological

University Singapore

SHANTANU004@e.ntu.edu.sg

Abhay George Nainan

U1423092K
School of Computer Science and

Engineering, Nanyang Technological

University Singapore

ABHAYGEO001@e.ntu.edu.sg

Jacob Sunny

U1421414L
School of Computer Science and

Engineering, Nanyang Technological

University Singapore

JACOB004@e.ntu.edu.sg

 Mohammad Sharique Zaman

U1422997K
School of Computer Science and

Engineering, Nanyang Technological

University Singapore

SHARIQUE001@e.ntu.edu.sg

ABSTRACT

The proliferation of Fake-News is a significant problem at

the intersection of politics and technology, due to the

potential for malicious agents to drive socio-political

agendas. Current approaches to detect fake-news involve

manual fact-checking, and crowd-sourcing which are both

tedious and error-prone. The complexity of the task means

text mining and machine learning models can make

significant contributions to fake-news detection. While the

problem-statement of fake-news is simple, the number of

variables describing fake-news are both numerous and

complex. Corresponding approaches can range from natural-

language models to social-network propagation analysis. To

this end, we surveyed existing literature and explored the

following three approaches: language analysis, stance

analysis and website domain/social media account

trustworthiness. Consequently, we developed a system that

leverages on text mining and machine learning models to

detect fake articles. The system currently constitutes an

ensemble of three models that use text features, stance scores

and domain trustworthiness for prediction. Additional

models can be added to the system to incorporate more

variables of fake news. The methodology of the current

system as well as the performance of its constituent models

are presented in this report.

KEYWORDS

Fake-News Detection, Data Mining, Natural-Language

Processing, Deep Learning, Ensemble Methods, Machine

Learning

1 INTRODUCTION

Social media and online publications have become the key

medium of information distribution, due to its ease of both

creation and consumption. This mechanism has however

been exploited by malicious agents who seek to drive their

social or political agendas through Information Operations.

The term Information Operations is defined by Facebook in

its whitepaper [1] as:

“…Actions taken by organized actors (governments or non-

state actors) to distort domestic or foreign political

sentiment, most frequently to achieve a strategic and/or

geopolitical outcome. These operations can use a

combination of methods, such as false news, disinformation,

or networks of fake accounts aimed at manipulating public

opinion...”

The need for automation, and the lack of a clear-cut

algorithmic process to verify an article makes this problem

an interesting target for data mining, natural language

processing and machine learning based solutions.

1.1 Case Study – Russian Involvement in US Elections

In 2017, in the aftermath of the US Elections of 2016, it came

to light in several investigations that Russian political actors

had extensively used social media to subvert elections in

many countries[1]. Paid Russian trolls as well as automatic

bots created several pages and distributed messages via

social media favouring candidates as well as spread fake

news and propagandist articles to sow discontent between

2

different groups to socially engineer a favourable election

result. Representatives from Facebook and Google were

strongly rebuked in a Congressional hearing for their failure

to identify and curb these activities.

‘Fake news’ played a prominent role in these activities.

2 PROBLEM DESCRIPTION

Text-Mining is an approach that uses Language-Analysis

tools such as TFIDF to represent the local-information of an

article. Given a corpus of articles, as seen in the Kaggle

Getting Real about Fake News challenge, a TFIDF vector for

the corpus is generated, and then Logistic Regression,

Random Forest, and XGBoost models are trained to classify

the articles.

Problem Statement: Given an Article x, comprising of a

Body, Headline, and Website Domain, learn F(x), where F(x)

maps x to the class set C = {1: Fake, 0: Verified}

Information about an Article x can be divided into two

primary components, namely meta-information and local-

information. Meta-information pertains to external

information about the article, such as publisher reputation,

publication date-time, and article tags issued by the

publisher. In contrast, Local-information is extracted solely

from the Headline and Body text strings of the Article. The

breadth of potential features that can be extracted from both

an Article’s meta-information and local-information allow

for multiple approaches to build the required classifier.

Subproblem 1: Given an Article x, from an Article corpus X,

develop a classification model that extracts textual-features,

learns the corresponding parameters, and generates ∃ F(x),

where Fmodel1(x) maps x to the set C = {1: Fake,

0: Verified}

Another method to using Local-information is extracting the

topic of an article, identifying its stance on the topic, and

comparing this stance to the stance of other articles with the

same topic. This is akin to human process of examining

different articles to fact-check the claims of the article in

question. This leads to:

Subproblem 2: Given an Article a, and another Article b,

develop a stance prediction model that extracts textual-

features, and learns F(a, b), where F(a, b) maps the tuple (a,

b) to the set S= {Discusses, Agree, Disagree, Unrelated, }

Stance Definition: A Stance is a discrete representation of

the mapping between a headline and an article, i.e. for ∃

(a,b), a,b 𝝐 ArticleSet, f(a,b) 𝝐 {Agree, Disagree, Unrelated}.

If the claim made by Article A, matches the claim made by

Article B, then f(a,b) = Agree. If the claim made by Article

A, is the opposite of the claim made by Article B, then f(a,b)

= Disagree. Otherwise, f(a,b) = Unrelated

Meta-information of an article is actively used by humans in

discerning its trustworthiness. The reputation of the

journalist or the publisher is an important consideration

when verifying an article. The trustworthiness (Tw) of an

article is evaluated as follows:

𝑇𝑤(𝑑𝑜𝑚𝑎𝑖𝑛) = 𝑃(𝑟𝑒𝑎𝑙|𝑑𝑜𝑚𝑎𝑖𝑛) − 𝑃(𝑑𝑜𝑚𝑎𝑖𝑛|𝑓𝑎𝑘𝑒)

 =
𝐶𝑜𝑢𝑛𝑡(𝑑𝑜𝑚𝑎𝑖𝑛,𝑟𝑒𝑎𝑙)

𝐶𝑜𝑢𝑛𝑡(𝑑𝑜𝑚𝑎𝑖𝑛)
−

𝐶𝑜𝑢𝑛𝑡(𝑑𝑜𝑚𝑎𝑖𝑛,𝑓𝑎𝑘𝑒)

𝐶𝑜𝑢𝑛𝑡(𝑓𝑎𝑘𝑒)

At the same time, two articles on the same topic, but from

different domains, could have similar textual-features but

differing truth-values. An ensemble model is required to

firstly weight the stances of an article by its domain

trustworthiness, and secondly combine the approaches in

Subproblem 1 and Subproblem 2 to classify an article.

Subproblem 3: Given an Article a:

 compute Tw(a) for domain trustworthiness

 Compute Fmodel-1(a) for dataset specific score

 use Subproblem 2 to compute P (a == True)

 generates F(Tw(a)*P(a==True), Fmodel-1(a)), where

F (a, b) maps the tuple (a, b) to class set C = {1:

Fake, 0: Verified}

3 LITERATURE REVIEW

While fake-news detection might be a relatively nascent

field, text-mining of news articles is an established body of

research, and several techniques from these fields are

borrowed to build our classifiers.

3.1 Feature Extraction Review

Feature extraction for Fake News Detection is split into the

two general fields of News Content Features and Social

Context Features.

News Content Features: News Content Features are

extracted from attributes such as Article Source, Headlines,

Body Text, and Images/Videos. These features can be

language-based such as presence of clickbait titles, hate-

speech, and long-winded rant-like sentence structures,

among others. Text-mining techniques such as n-grams,

bag-of-words, and Parts-of-Speech (POS) tagging can help

identify such syntactical features [6]. Domain-specific

language structures, i.e. features that are specific to News

3

Articles, such as quotations, number of citations, quality of

external links can also be used to capture hints of deception

or at least poor-quality journalism, giving us, an idea of

which articles are well-researched and substantiated, and

which articles are fake-news simply masquerading to be

professional journalism [2].

Social Context Features: Such features depict how the

article has propagated across the media, from publication to

social-engagements such as sharing, liking, and re-tweeting.

User-related Social Context Features include frequency of

posting, posting time-of-day, and sentence templating to

check whether the original publisher is a bot, or an actual

human [2]. Group-related Social Context Features create

Sharing-Graphs to verify whether a group of members

constantly share or re-tweet between themselves to make the

article more popular, or whether the article’s dissemination

is more organic.

3.2 Machine Learning Model Review

There is no specific Machine Learning model that

consistently outperforms other models, or is inherently

better suited to Fake News detection. Support Vector

Machines are conventionally used as the baseline model, and

its performance (not tuned) ranges from 50% to 70% across

different fake-news datasets [4].

A key concern in Fake News detection is that models are

overfitting on certain textual parameters such as some

specific n-gram or TFIDF vector column. Ensemble models

such as XGBoost and Random Forests are shown to learn

more nuanced rules about the parameters, and thus reduce

overfitting [5].

Lastly, Deep Learning has been used extensively, especially

Recurrent Neural Networks, in hopes that the model is able

to extract more information from temporal sequences of

textual features than static models. While RNNs, especially

LSTMs are shown to outperform Ensemble Decision-Tree

based models, the performance increase is reported to not be

significant [4].

Lastly, it is shown that models trained on one fake-news

corpus are not generalizable to articles from a topically

distinct corpus. This is especially true for textual-features

based machine-learning models, which rely on the presence

of corpus-specific n-grams and sentence structures to

classify an article [5].

4 EVALUATION METRICS

To evaluate our model that we developed for the discussed

problem, various evaluation metrics have been used. In this

subsection, we define the following terms:

 True Positive (TP): when predicted fake news is

fake news

 True Negative (TN): when predicted true news is

true news

 False Negative (FN): when predicted true news is

fake news

 False Positive (FP): when predicted fake news is

true news

Using these definitions, we compute the following metrics:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑇𝑃|

|𝑇𝑃| + |𝐹𝑃|

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑇𝑃|

|𝑇𝑃| + |𝐹𝑁|

𝐹1 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝑇𝑃| + |𝑇𝑁|

|𝑇𝑃| + |𝑇𝑁| + |𝐹𝑃| + |𝐹𝑁|

These metrics are frequently used in machine learning for

showing the performance of classifiers. In our specific

context, accuracy depicts the similarity between the

predicted and real fake news. Precision measure the subset

of all detected fake news that were classified as fake news.

But it is relatively easy to get a high precision, which is

possible by making very few positive predictions. This is

where recall comes in. Recall is used to measure the

sensitivity, or the true positive rate which is the fraction of

annotated fake news articles that are predicted to be fake

news. F1 is used to combine precision and recall, which can

provide an overall prediction performance for each our

models.

5 DATASET SPECIFIC FEATURE MINING

(Subproblem 1)

5.1 Introduction

The prominence of hate-speech, and extreme-bias in Fake-

News articles makes language-analysis based methods a

promising approach. This is because of the relatively higher

frequency of derogatory phrases such as ‘Muslim-Invasion’

and ‘Crooked-Hillary’, which can be captured by n-grams.

TFIDF vectors extract such prominent n-grams by

calculating their frequency relative to the corpus, and can be

4

passed as input vectors to machine-learning models to build

a classifier [8]. Given a dataset consisting of news articles

(A), let Atext represent the textual content of the article. Atext is

a tuple of Aheadline and Abody, each of which contain a String

object storing the text data of the respective article section.

Aheadline and Abody can be represented as a TFIDF vector

[4,12].

5.2 Dataset Description

The data-set is unique, and has been constructed from

existing fake-news data-sets from the Fake News Challenge,

and Kaggle's Getting Real about Fake News Challenge. It

has then been enhanced by web-scraping news articles from

verified sources such as The Guardian, New York Times,

and Bloomberg, using a custom-built web-scraper through

the libraries Scrapy and BeautifulSoup.

Table 1: Dataset Statistics

 Count Fake article

Count

Verified

article Count

Overall 27473 18409 9064

Train 18406 12299 6107

Test 8160 5514 2646

Validate 907 596 311

5.3 Data Exploration

We observed from the visualizations that the words that were

commonly occurring in fake news articles fall into three

main categories:

Strong Adjectives: Words like ‘brutal’ and ‘massive’ are the

most frequently used in fake news articles as clickbait

material for attracting the attention of internet surfers.

Politically and Religiously Charged: Common words that

came up during the mining showed that words instigating

political and religious bias were popularly read by the

respective sectors.

Name-Calling: These appeared in fewer articles and tries to

instigate hate and violence against sectors of the society.

Table 2: Commonly Occurring Word Groups

Adjectives Political

Religious

Name-Calling

Brutal Brexit Crooked-Hillary

Aggressive Mosul Islamic Pests

Massive Obama

Destructive Trump

The prominence of hate-speech, and extreme-bias in Fake-

News articles makes language-analysis a promising

approach.

5.4 Feature Extraction

One interesting point which emerges from our preliminary

observations is that the text provides a valuable insight into

determining the fakeness of the given article. Hence, we

decided to extract an array of well-known text features, few

of which we have described below.

TF-IDF: Term Frequency / Inverse Document Frequency is

a statistical measure that reflects how important a term is in

a document or a collection of documents. It is used as a

weighting factor in information retrieval, data mining, etc.

i.e. it is used to reflect the relative contribution of different

words to a document. Term Frequency is simply a measure

of a term in the document, which approximates the

importance of the term. However, it does not consider the

fact that certain words just appear more frequently in the

language or that particular corpus. Therefore, Inverse

Document Frequency, a measure of how frequently a word

appears in the corpus is used to offset Term Frequency to

provide a more accurate approximation of the term’s

importance.

For example, if we wished to rank a set of documents based

on which is most relevant to the query ‘the nuclear war’, we

should prioritize occurrence of the term ‘nuclear’ more than

5

the term ‘the’ ‘the’ occurs way too frequently and does not

necessarily indicate that the given document is very relevant

to the query. That is the information TF-IDF provides us.

N-Grams: An n-gram is a contiguous sequence of n items

that forms a given sequence of text or speech. These items

could be syllables, words, letters or anything else based on

the application it is being used for. An n-gram of size 1 is

called ‘unigram’, of size 2 is called ‘bigram’, of size 3 is

called ‘trigram’ and so on [13].

From the sentence ‘The US President Donald Trump

tweeted …’, unigrams will be ‘The’, ‘US’, ‘President’,

‘Donald’, … and the bigrams will be ‘The US’, ‘US

President’, ‘President Donald’, ‘Donald Trump’, and so on.

We can use n-gram frequency to match similar articles. For

example, matching frequency of the n-gram ‘Trump

tweeted’ in different articles is a much stronger indicator that

they are similar compared to just matching frequency of the

words ‘Trump’ and ‘tweeted’[10].

Bag of Words: Bag of words is a simplifying representation

of a text or document solely as a multiset of its words,

disregarding their relative order or grammar, but preserving

their frequency. Bag of word representation is a prerequisite

for extracting useful features from the document for its

classification, for instance, term frequency. This model is

commonly used in natural language processing and

computer vision[10].

5.5 Models Experimented

On extracting a preliminary set of features, we fed them into

three different models to train the prediction of the news

articles.

XGBoost: XGBoost stands for extreme Gradient Boosting. It

is an open source software library which provides a gradient

boosting framework for C++, Java, Python and many other

languages. It is used for supervised learning problems, where

we use the training data (with multiple features) Xi to predict

a target variable Yi. It is developed with both deep

considerations in terms of systems optimization and

principles in machine learning. Over the years it has gained

a lot of popularity in Data Science circles and it is the

algorithm of choice in Kaggle competitions.

Linear Regression: Linear regression was developed in the

field of statistics and is studied as a model for understanding

the relationship between input and output numerical

variables. It is now increasingly used as an algorithm in

machine learning applications. Linear regression assumes a

linear relationship between the input variable and a simple

output variable. Based on the training data, it allows us to

form a model which allows future predictions. Linear

regression model’s simplicity makes it a very attractive

model.

Random Forest: Random Forest is one of the most popular

and most powerful machine learning algorithms. It is a type

of ensemble machine learning algorithm called Bootstrap

Aggregation or bagging. Random Forests are an

improvement over bagged decision trees. A problem with

Figure 1: Data Pipeline Schema for Text-Mining

6

decision trees like CART is that they are greedy. They

choose which variable to split on using a greedy algorithm

that minimizes error. As such, even with Bagging, the

decision trees can have a lot of structural similarities and in

turn have high correlation in their predictions[10]. Random

forest limits the learning algorithm to a random subset of

features to search and therefore avoids this problem.

5.6 Result Summary

Below are a summary of the results we have obtained from

the different models that we tested:

Table 3: Model Performance Statistics

Models F1 Score Accuracy

Logistic Regression – Headlines 69.58 75.83

Logistic Regression – Body 74.87 75.49

Random Forest

– Headline

70.54 76.74

Random Forest

– Body

89.07 88.71

XGBoost – Headline 95.33 91.28

XGBoost – Body 92.49 93.75

Both Random Forests, and XGBoost offer a marked

improvement in accuracy and F1-Scores over the baseline

model of Logistic Regression. The key take-away is the

success of ensemble models. We suspect there are three

reasons for this is:

1. Decision-Tree based models are able to unearth more

complex rules than Regression models, and are able to

identify singular features or feature-combinations that

are dominant.

2. Ensemble Decision-Trees in general reduce variance

because the average opinion of many models would be

less noisy than that of one model [9].

3. Ensemble Decision-Trees are less likely to over-fit than

regression models. This can be clearly seen in the case

of F1-Score, and Accuracy charts against number of

samples during cross-validation. While the F1 and

Accuracy Scores suddenly rise for Linear Regression

after a critical mass of samples during training, this

trend is not supported during testing.

Fig 2: F1 Score of Logistic Regression - Headline TFIDF

Fig 3: F1 Score of XGBoost using Body TFIDF

As can be seen, XGBoost seems to be actually learning

complex decision rules, since both testing and training

scores are steadily increasing with the number of samples.

Whereas, for Logistic Regression, the testing scores are

decreasing even though the training scores are increasing.

Ultimately, the XGBoost algorithm was finalized, because it

best incorporated the advantages of Ensemble Models over

Logistic Regression, had the highest accuracy, and overfit

the least.

7

6 STANCE DETECTION MODEL (Subproblem 2)

6.1 Motivation

In the previous section we described the functioning of our

model which uses text features from an existing dataset to

predict classify articles as fake or real. While the model

achieves a decent accuracy on the testing set, it only uses

mined text occurrences in the form of TFIDF to classify fake

news. However, articles with similarity in TFIDF vectors

can have opposite veracity. As a result, a Stance-Detection

model is developed, such that if some Article T, has an

opposing stance to a verified Article V, then it is likely to be

Fake. Consider the following two headlines:

H1: “Kremlin Denies Meddling in US Elections” - Fake

H2: “Kremlin Officials Confess US Manipulation” - Fake

As shown above, H1 and H2 are contradictory statements yet

both are classified as being fake. This is due to the heavy

reliance on dataset specific text features. The previous model

may have learned to associate the term “Kremlin” with fake

articles based on the training dataset. Thus, any new article

with the term “Kremlin” and other less relevant terms may

be classified as fake.

We aim to make our model more ‘symmetric’ and ‘global’

by incorporating a domain weighted stance computation

model. We define the above two terms as follows:

Symmetric: A model is symmetric if for two contradictory

articles A1and A2,

fake_score (A1) = 1 - similarity (A1, A2) * fake_score (A2)

Global: A model is global if while computing fakeness of an

article A1, it uses information from all articles related to A1.

6.2 Stance Computation Model

In this section, we describe the methodology of developing

the stance detection model. The stance model computes for

any given pair of headline and body, the following:

As shown above, the model outputs stance by learning a set

of parameters θ on the training data to identify the highest

probability stance class.

6.3 Dataset

To develop the stance detector model, we obtained data from

the http://www.fakenewschallenge.org/ . Each row in the

training and validation data consists of three columns:

headline, body and stance. The testing data consists of just

rows of headline and body. The dataset statistics are

summarized as below:

 Table 4: Stance Dataset Statistics

As can be seen from the bar plot in Figure 2, majority of

instances are unrelated. This is to ensure that the classifier

model is robust to only extract key features that signify

whether an article body discusses a given headline.

6.4 Feature Extraction

Given the dataset for stance only comprises of text headline

and articles, we derive more text features.

1) TFIDF for headline and body: We again made use of

TFIDF as described in section _. The TFIDF is obtained

jointly for headlines and bodies. Thus, given related

headlines and bodies, the TFIDF representation should

be similar.

2) Cosine similarity of TFIDF representations: The cosine

similarity is a popular similarity measure between two

vectors by using the angle between them. It is computed

as follows:

http://www.fakenewschallenge.org/

8

cosine similarity(a, b)=
𝐴.𝐵

|𝐴|.|𝐵|

We use the cosine similarity between the TFIDF

representation of headline, and TFIDF representation of

body as a feature in our model.

3) Word Embeddings (Word2vec vector representations):

Word2vec is a neural network based language

modelling technique which maps words to vectors of a

fixed dimension length. The vectors capture context

dependent usage and co-occurrence of words. Using

word vectors as features is extremely useful in our task

since it encompasses natural language processing

features such as synonyms, plurals, verb tenses and

related corpus words. For example, since ‘UFO’ and

‘aliens’ are likely to occur in the same context

frequently in a corpus, they will be situated close to each

other in the vector space. This property is shown in the

image below [13]:

Figure 5: Word2Vec Representations

 We obtained pre-trained word vectors from

https://github.com/mmihaltz/word2vec-GoogleNews-

vectors . It consists of 300 dimensional representations

of 3 billion English running word tokens.

4) Singular Value Decomposition: Singular value

decomposition is a matrix factorization approach which

decomposes a given matrix A into the three matrices U

V D given by the following:

𝐴 = 𝑈. 𝐷. 𝑉𝑇

The obtained values in D are positive entries known as

singular values. Thus, SVD can be used as a

dimensionality reduction technique. We make use of it

as a feature by using the singular values obtained from

performing SVD on the concatenated TFIDF

representation of headlines and articles.

6.5 Experimented Models

The table below lists the performance of the models we

trained for stance detection on the previously mentioned

dataset.

Table 5: Model Performance Statistics

Models Competition

Scores

Validation

Scores

Baseline 75.20 79.53

SVM - 65.94

BiLSTM 75.80 80.25

BiLSTM+

Concat

TFIDF

80.80 85.52

Note: Since the competition ended on Jun 2nd 2017, we only

obtain scores by running the competition_scorer.py

provided by the organizers.

6.5.1: Baseline Model: The baseline model used by the Fake

News Challenge makes use of Gradient Boosting Classifier.

The features used are: normalized word tokens, overlap of

tokens in headline and body, specific refuting words and

counts of n-grams and char-grams.

6.5.2: SVM Model with TFIDF representation: Our first

model consisted of computing the TFIDF representation of

headline and body and feeding the concatenated

representation it into a Linear Support Vector Machine.

Support Vector Machines

Support vector machines are supervised learning models

with associated learning algorithms that try to determine an

optimal hyperplane to maximize the distance of hyperplanes

between given classes. We make use of the LinearSVC

package [8].

https://github.com/mmihaltz/word2vec-GoogleNews-vectors
https://github.com/mmihaltz/word2vec-GoogleNews-vectors

9

Model Architecture

The model is represented in the figure below:

 Figure 6: SVM based stance model

Model Performance

It achieves a poor validation score of 65.94% which is much

lesser than the competition baseline, hence we do not score

this model from the competition testing set. This may be

because the data is not linearly separable and hence the SVM

is not able to find a suitable decision boundary.

6.5.3: Bidirectional LSTM with word2vec embeddings:

Our second model consisted of using a deep learning based

bi-directional LSTM model initialized with word2vec

embedding representations. We first display the model

architecture and then elaborate on the deep learning methods

that we used for our experiment.

Model Architecture

In our experiments we make use of the Keras package with

Tensorflow backend to perform experiments. Additionally,

the following models are run on a GPU processor given the

high dimensionality of input data.

 Figure 7: Bidirectional LSTM based stance model

Fully Connected Artificial Neural Network

A fully-connected Neural Network uses a non-linear

activation function to learn complex non-linear decision

rules. For example, using the standard sigmoid activation

function the output h1 is:

ℎ1 = sigmoid(𝐰. 𝒙)

Where the sigmoid function is defined as:

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1/(1 + 𝑒−𝑥)

Other non-linear activation functions include Tanh, Rectified

Linear Unit, and Softmax.

Long Short-Term Memory Network (LSTM)

Recurrent Neural networks (RNNs) is specific type of

artificial neural network where connections between hidden

units form a directed cycle. Hence, it can capture sequential

dependencies for input data. This is extremely useful in

natural language processing tasks, since written text often

follows a sequential relation.

However, traditional RNNs suffer from vanishing

gradients, due to which they lose information over long

sequences. This severely inhibits their performance in

10

capturing long sequences. Hence, LSTMs are introduced,

which contain of memory cells, and more parameters to

capture long term dependencies.

A Unidirectional LSTM only preserves information of the

past because the only inputs it has seen are from the past. In

Bidirectional LSTMs, inputs are run once from past to future

and then from future to past, and in this way it is able to

preserve both those sets of information in its hidden states.

Softmax Output

The Softmax function is used to represent a categorical

distribution, i.e. the probability distribution function of K

different events. Softmax is designed to assigns the largest

probability to the most frequently appearing category, and

suppress the values that are significantly out of line with the

average. Given an input vector x, the probability that the

output y = j given by:

𝑃(𝑦 = 𝑗|𝑥) =
𝑒𝒙𝑇𝒘𝑗

∑ 𝑒𝒙𝑇𝒘𝑘𝐾
𝑘=1

Mean Cross-Entropy Cost Function

The cross-entropy measure has been used as an alternative

to squared error. Cross-entropy can be used as an error

measure when a network's outputs can be thought of as

representing independent hypotheses (e.g. each node stands

for a different concept), and the node activations can be

understood as representing the probability (or confidence)

that each hypothesis might be true. In that case, the output

vector represents a probability distribution, and our error

measure - cross-entropy - indicates the distance the

network’s output distribution for stance labels against actual

one hot encoded labels. The cross-entropy between a “true”

distribution p and an estimated distribution q is defined as:

𝐻(𝑝, 𝑞) = − ∑ 𝑥 𝑃(𝑥) log (𝑞(𝑥))

RMSProp Function

RMSProp is an improvement of Stochastic Gradient Descent

(SGD). It keeps running average of its recent gradient

magnitudes and divides the next gradient by this average so

that loosely gradient values are normalized.

Dropout Regularization

Dropout is a regularization technique for reducing

overfitting in neural networks by preventing complex co-

adaptations on training data. It is a very efficient way of

performing model averaging with neural networks.

Model Performance

As shown in Table 5, our bidirectional LSTM performs

much better than the previous SVM based model and also

beats the baseline during validation as well as competition

testing set. However, we realized by adding more features to

the deep learning model we could improve its performance.

6.5.4: Bidirectional LSTM with word2vec embeddings:

Our final model consisted of using a deep learning based bi-

directional LSTM model initialized with word2vec

embedding representations. In addition, we concatenated

TFIDF representations of headline and body. Finally, we

also use the cosine similarity between both the LSTM

representations as well as the TFIDF representations.

Figure 8: Deep Learning Model Pipeline

As shown above, our model now incorporates TFIDF

features as well as cosine similarities between

representations. The final layer input is a concatenated

representation of [Headline and Body LSTM, Headline and

Body TFIDF, Cosine similarity between Headline and Body

LSTM, Cosine similarity between Headline and Body

TFIDF]. This is fed into a fully connected neural network

11

layer of 64 units. The hyper-parameters for our final model

are given below:

Table 6: Deep Learning Model Hyper-Parameters

Model Performance:

As shown in Table 5, the model achieves a validation

accuracy of 85.52% but a competition testing score of

80.8%. This is shown in the plot below:

Figure 9: Stance Model Accuracy over Epochs

As can be seen from the plots, our model overfit on the

training data after epoch 8. To counter this more number of

epochs are run. Given GPU restrictions, we limited to GPU

running time of 2 hours (40 epochs). Typically winning

models are run over 100 epochs.

Additionally, the model’s score on the competition testing

set, when run using the competition scorer resulted in a

competition score of 9148.500. This corresponds to a private

rank of 13th out of 50 competitors in the competition

leaderboard although the competition has now ended [11].

The final testing confusion matrix is given below:

 Agree Disagree Discuss Unrelated

Agree 1046 36 256 565

Disagree 17 339 185 156

Discuss 401 209 1778 2076

Unrelated 130 88 750 17381

The model accuracy came to 80.8%. The maximum

possible score in the fake-news challenge is 11651.25. The

model scored 9147.0. This would rank at 13th

corresponding to 50 historical participants.

Figure 10: Stance Model Loss over Epochs

HyperParameter Definition

LSTM hidden units 64

Headline LSTM length 30

Body LSTM length 200

Fully connected layer units 64

Dropout 0.2

Cost function Mean Cross Entropy

Optimizer RMSProp

Batch size 32

12

7 COMBINED MODEL

7.1 Motivation

From our observations in section 5 and 6, we see that both

the Dataset-specific text Feature Mining and the Stance

Detection Models provide us with valuable insights into

determining the fakeness of a given news article. Our final

model proposes a novel combination of the above two

models to determine the fakeness of the article.

Figure 11: Combined Model Architecture

We combine the final predictions made by the model

described in Section 5 and in Section 6 in our final model

using a weighted average. The weights can be learned using

different methods. The major limitation that we faced while

was that the Text Based model was trained on a different

dataset as compared to the Stance Based model. As a result,

applying the combined model to either data-set would result

in poor performance, since the features of both models are

specific to the corpus they were trained on. A solution to

this problem would be to either label the news articles in the

stance data-set as ‘fake’ or ‘verified’, or assign stance labels

to tuples of news articles in the fake-news Data-set.

8 FUTURE RESEARCH

The project is still in its nascent stages, and future research

and development will focus on the following three sections:

8.1 Enhancement of Textual Features

Apart from TFIDF vectors, sentiment-extraction from an

article body is shown to be a promising feature in

classification of news articles [4, 6]. This is because of the

extreme and imbalanced sentiments expressed in some fake-

news articles, especially in hate-speech.

Another relevant technique is known as Claim Extraction.

This technique is a subset of the broader technique of text -

summarization [11]. Explicitly extracting and comparing the

claims made by an article could yield better performance

than implicitly extracting claims through vector

representation of an article, and this could make Stance

Recognition more effective.

8.2 Optimization of LSTM Hyperparameters

Due to limited access to a GPU workstation, it was difficult

to fine-tune the hyperparameters of the LSTM such as the

number of dropout, and pooling layers, the number of

neurons in each layer, and other parameters. Stacking

multiple layers of RNNs would bring temporal hierarchy to

the model and allow it better to understand the changes in

textual-features over time.

8.3 Framework Packaging and API:

Ultimately, the goal for FakeNet is to become a general

library for fake-news detection, where end-users can plug in

their corpus, train the models, and begin article

classification. To this end, there is already a function that lets

users input their article in a String format and returns a

classification based on the existing corpus. However,

providing an API to re-train on a supplied corpus is the next

step. Speed enhancements to the training and testing process

are critical as well.

9 CONCLUSION

This paper successfully demonstrates the validity of textual-

feature, article-stance, and domain-weighted ensemble

approaches to fake news classification. In the traditional

machine-learning category, XGBoost delivers the best

performance due to the low variance, and reduce overfitting

that is typical of ensemble models. The Stance Bi-directional

LSTM is ranked 13th out of 50th using the Scorer Module of

the Fake News Challenge. The key innovation is combining

a stance-based prediction model with tradition textual-

features based models, thereby leveraging on a separate area

of research to enhance fake-news detection algorithms. The

implementation details along with the source code can be

found at: https://github.com/shantanuj/Fake_Net

Model performances however, were sensitive to the

percentage distribution of fake-news to real-news in the

corpus. Since the real-world distribution of fake to real-

news is unknown, it was difficult to design an ideal corpus.

Additionally, the fake-news models presented here are

https://github.com/FakeNewsChallenge/fnc-1
https://github.com/shantanuj/Fake_Net

13

corpus-dependent and not generalizable. For example, the

Bloomberg scraping focuses heavily on Trump articles, and

thus it fails to recognize fake-news articles in domains

outside of Politics.

REFERENCES

[1] J. Weedon, W. Nuland, A. Stamos, “Information

Operations and Facebook”, ACM SIGKDD

Explorations Newsletter, 2017

[2] S. Kai, S. Amy, W. Suhang, T. Jiliang, L. Huan Fake

News Detection on Social Media

[3] T. Kanan, E. A. Fox, "Automated Arabic text

classification with P-Stemmer machine learning and a

tailored news article taxonomy", J. Assoc. Inf Sci.

Technol., 2016.

[4] C. C. Aggarwal, C. Zhai, "A Survey of Text

Classification Algorithms", Mining Text Data, pp. 163-

222, 2012.

[5] M. Kompan, M. Bieliková, News Article Classification

Based on a Vector Representation Including Words'

Collocations.

[6] D. Y. Liliana, A. Hardianto, M. Ridok, "Indonesian

News Classification using Support Vector Machine",

Int. J. Comput. Electr. Autom. Control. Inf. Eng., vol. 5,

no. 9, pp. 1015-1018, 2011.

[7] D. M. Blei, A. Y. Ng, M. I. Jordan, "Latent Dirichlet

Allocation", J. Mach. Learn. Res., vol. 3, pp. 993-1022,

2003.

[8] G. Heinrich, Parameter Estimation for Text Analysis,

2009.

[9] D. X. Zhou, P. Resnick, Q. Mei, Classifying the

Political Leaning of News Articles and Users from User

Votes Semi-Supervised Learning Algorithms, pp. 417-

424.

[10] Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo

Lopez-Gazpio, Lucia Special, SemEval-2017 Task 1:

Semantic Textual Similarity - Multilingual and Cross-

lingual Focused Evaluation.

[11] Régis Riveret, Pietro Baroni, Yang Gao, Guido

Governatori, Antonino Rotolo, Giovanni Sartor:

A Labelling Framework for Probabilistic

Argumentation.

[12] Johannes Furnkranz. A study using n-gram features for text

categorization. Austrian Research Institute for Artificial

Intelligence, 3(1998):1–10, 1998.

[13] Martin Potthast, Johannes Kiesel, Kevin Reinartz, Janek

Bevendorff, and Benno Stein. A stylometric inquiry into

hyperpartisan and fake news. arXiv preprint

arXiv:1702.05638, 2017.

https://www.bloomberg.com/features/trump-daily/

